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Abstract
This study leverages the capabilities of the SWOT
mission–particularly its RiverSP node products–to improve
riverine flood forecast. Using an ensemble Kalman fil-
ter framework, several strategies are tested to sequentially
update hydraulic model parameters. Evaluations against
Sentinel-1 and Sentinel-6 data show that SWOT obser-
vations alone enhance model accuracy, while their combi-
nation with in-situ water level data yields the best repre-
sentation of flood dynamics. Experiments conducted on
Garonne River (France), Loire River (France) and Ohio
River (US) confirm the robustness of this approach. The
joint assimilation of SWOT water surface elevation and
other EO data also enables improved flood extent repre-
sentations, offering promising perspectives for integrating
these datasets into global hydrological and routing models
to advance large-scale flood monitoring systems.
Keywords: Fluvial floods, Data assimilation, EnKF,
TELEMAC-2D, Sentinel-1, SWOT, L2_RiverSP_Node.

Study Area
Fig. 1: TELEMAC-2D model over Garonne and Vienne-
Loire.

Method
Fig. 2: SWOT river products on 2024-03-31T15:16:15.

Fig. 3: Proposed Workflow
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WSE: water surface elevation (in-situ + SWOT)
WSR: wet surface ratio (Sentinel-1 + SWOT)
Ens.: ensemble
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Table 1: Experimental setting.
Assimilated obs.

Exp. SWOT In-situ Sentinel-1 Control
name WSE WSE WSR vector
OL ˝ ˝ ˝ -
RSDA ✓̋ ˝ ✓̋ Ks, Q, dH
FDA ✓̋ ✓̋ ✓̋ Ks, Q, dH

Table 2: RMSE [m] of simulated WSE at observing sta-
tions. Left: Garonne; Right: Vienne-Loire.

Exp. TON MD0 LR0 CHN MSR
OL 0.449 0.301 0.195 0.854 0.232

RSDA 0.491 0.261 0.383 1.143 0.417
FDA 0.127 0.073 0.080 0.129 0.063

Three experiments: 1 open-loop (OL) and 2 data
assimilation (RSDA & FDA) with 96 members.
Control vector: Strickler friction coefficients Ks,
parameter µ to correct inflow discharge Q, and

floodplain corrective state variables dH.

Fig. 4: Simulated WSEs at gauge stations (OSSE).

SWOT observations at the nearest node to the gauge are
denoted by  , simulated by ˆ RSDA and ∇ FDA.

Experimental Results
Fig. 5: Simulated WSEs at gauge stations. Top panel:
Garonne; Bottom panel: Vienne-Loire.

SWOT observations at the nearest node to the gauge are
denoted by  , simulated by ˆ RSDA and ∇ FDA.

Fig. 6: Simulated WSEs at along rivers.

Fig. 7: Contingency maps w.r.t observed flood extents.

Ñ The assimilation of SWOT WSE +
Sentinel-1 WSR improves flood extend

representations.

Observations
a. Surface Water and Ocean Topography
With KaRIn, SWOT main river data products are deliv-
ered as pixel clouds (PIXC), RiverSP nodes, reaches, and
rasters. In this work, node-averaged water surface eleva-
tion (WSE) and rasterized water masks are utilized.
Tools4SWOTsims: a set of Python scripts to map 1D/2D
hydrodynamic model outputs into 2D WSE rasters that is
compatible with SWOT simulators.
SWOT-HR simulator to render the WSE rasters into PIXC.
RiverObs package to generate RiverTile products.
b. In-situ water level observations
In-situ gauging stations are maintained by the national
obsering network within the catchments providing WSE
time-series data with high temporal resolution.
c. Copernicus Sentinel-1 observations
SAR is efficient at monitoring flood extents due to all-
weather day-and-night imaging capabilities. Flood extents
can be derived from C-band SAR Sentinel-1 (S1) images
using a Random Forest classifier. WSR is the ratio be-
tween the number of wet pixels and the total number of
pixels within each of the floodplain subdomains.
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Conclusions
✓̋ Merits of leveraging heterogeneous observa-

tions from Sentinel-1 SAR and SWOT data;
✓̋ Ensemble-based DA allows improving reanaly-

sis and forecast in the riverbed and floodplain;
✓̋ Merits of SWOT data over poorly-gauged

catchments (e.g. Niles, Juba-Shabelle basins).

Perspectives
˝ Assimilating other observations, e.g. water

surface velocity, S-/L-/P-band SAR (NiSAR,
ROSE-L, BIOMASS);

˝ Investigating merits of daily satellite observa-
tions (e.g. SMASH, S3-NG-TOPO);

˝ Exploiting RS-derived flood fronts.
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