Uncertainty Reduction in Fluvial Flood Re-analysis by Assimilating SAR-derived Flood Extent Maps

H46D-08

T.H. Nguyen, S. Ricci, A. Piacentini, R. Rodriguez Suquet, G. Blanchet, C. H. David, P. Kettig, and S. Baillarin

15 December 2022 - 16:45 PM (CST)

THANH HUY NGUYEN

Researcher (PhD) at CECI UMR 5318 CNRS-CERFACS

thnguyen@cerfacs.fr

SCO-FLOODDAM-DIGITAL TWIN

FloodDAM-DT: Flood Detect, Alert & rapid Mapping – Digital Twin

An earth science digital twin architecture based on the water cycle and specifically flood hazards as its first application

Work-packages:

- Flood detection and alert based on in-situ river stations
- Mapping and monitoring on-going flood events
- Producing flood risk maps on selected zones
- Short-term forecasting using CFD models

CHALLENGES IN HYDROLOGY

Operational issue

How to predict river discharge for flood forecasting and water balance estimation?

Observations

- in-situ: high frequency but sparse
- remote sensing: spatial coverage but low temporal coverage
- Various nature of errors

Data assimilation

Numerical simulations

- Simplified Navier-Stokes equations 1D, 2D, 3D
- Limited information on bathymetry, topography, friction, hydrology, rainfall and maritime forcing

Scientific issue

How to apply data assimilation to predict discharge and water level in rivers, estuaries and lakes?

OBJECTIVES

From large-scale to local-scale:

- High-fidelity hydrodynamic models require large amount of input data
- BC forcing from observations or larger scale hydrologic model in forecast
- → Fine spatial and temporal scale for hydraulic state and flood dynamics

Make the most out of VHR remote sensing data AND numerical models

- On model inputs: bathymetry, topography, vegetation, friction
- On model correction: calibration, data assimilation for sequential update
- Risk evaluation based on ensemble approach
- Improve RS data with numerical simulations (data augmentation approach)

WORKFLOW AND DATA

TELEMAC-2D GARONNE MODEL

Study Area and Model

Model provided by EDF

- 50-km river reach (simple test case)
- Downstream from the Garonne-Lot confluence
- High flood risk impacting urban area

41,000-node mesh with different triangle size among riverbed, floodplain and dykes.

Boundary conditions:

- Upstream hydrograph Q(t) at Tonneins
- Downstream rating curve Z(Q) at La Réole

In-situ water-level data: 3 observing stations

44.4

Water level correction in 5 floodplain subdomains

CHAINING HYDROLOGIC-HYDRAULIC MODELS

- Routing Application for Parallel computation of Discharge (http://rapid-hub.org/)
- Replacing the river routing scheme in MODCOU from SAFRAN-ISBA-MODCOU (SIM) hydrometeorological model applied over France
- Divided by drainage basins
- 3-hourly timestep

Reference: David et al (2011), RAPID applied to the SIM-France model, Hydrological Processes, 25(22), 3412-3425. DOI: 10.1002/hyp.8070.

FORCING BY RAPID SIMULATION

Garonne Marmandaise

Tonneins (upstream BC)

CHAINING HYDROLOGY WITH HYDRAULIC MODELS

CHAINING HYDROLOGY WITH HYDRAULIC MODELS

Using measured VigiCrue data as forcing

Using **RAPID** simulation as forcing

No assimilation

- VigiCrue forcing + T2D model

Only assimilates insitu obs

- VigiCrue forcing + T2D model
- VigiCrue forcing + T2D model
- Corrects frictions + upstream Q

- IGDAV
- VigiCrue forcing + T2D model
- Corrects frictions + upstream Q
- VigiCrue forcing + T2D model

FRR

RAPID forcing + T2D model

IDAR

- RAPID forcing + T2D model
- Corrects frictions + upstream Q

IGDA^R

- RAPID forcing + T2D model
- Corrects frictions + upstream Q + water
 level in the floodplain

QUANTITATIVE RESULTS

	Assimilated obs.	Control vector	1D RMSE			2D Critical Success Index		
			Tonneins	Marmande	La Réole	02/02	03/02	07/02
			10111161113	Maimande	La Neole	19h00	19h00	07h00
FRV	-	-	0.359	0.193	0.225	49.65%	67.90%	74.53%
IDAV	Insitu WL	Friction + Q	<u>0.053</u>	0.036	<u>0.080</u>	48.67%	68.30%	76.10%
IGDA ^V	Insitu WL + WSR	Friction + Q + FP	0.059	<u>0.035</u>	0.087	<u>95.41%</u>	92.32%	<u>88.28%</u>
FRR	-	-	1.550	1.254	1.370	46.06%	36.63%	63.24%
IDA R	Insitu WL	Friction + Q	0.467	0.292	0.635	48.77%	57.90%	77.63%
IGDA ^R	Insitu WL + WSR	Friction + Q + FP	0.326	0.229	0.440	95.76%	94.34%	88.38%

All EnKF runs have 75 members

Q: correction on upstream forcing

FP: correction on water level in the floodplain

FRV VS FRR

- Open-loop simulation or FREE RUN (w/o assimilation)
- Use calibrated values for friction (constant) and observed forcing at boundary condition

RMSE	Tonneins	Marmande	La Réole
FR ^v (top)	0.359	0.193	0.225
FRR (bottom)	1.550	1.254	1.370

IGDAV VS IGDAR

- Cycled EnKF DA of in-situ and RS-derived WSR
- Applied a Gaussian anamorphosis (variable change)

 Obs@Tonneins (val)
 EnKF@Tonneins (Hx mean)
 S1 overpass time
 Obs@Marmande Vigicrue (val)
 EnKF@Marmande Vigicrue (Hx mean)
 S1 overpass time
 Obs@La Reole (val)
 EnKF@La Reole (Hx mean)
 S1 overpass time

RMSE	Tonneins	Marmande	La Réole
IGDA ^v (top)	0.059	0.035	0.087
IGDAR (bottom)	0.326	0.229	0.440

COMPARISON FRV - IDAV - IGDAV

	FR ^v (left)	IDA ^v (mid)	IGDA ^v (right)
CSI	67.90%	68.30%	92.32%

COMPARISON FRR - IDAR - IGDAR

	FRR (left)	IDAR (mid)	IGDA ^R (right)
CSI	36.63%	57.90%	94.34%

CONCLUSIONS AND PERSPECTIVES

- ✓ When gauge data are not available, RAPID simulations can be used as **forcing** and corrected with the **assimilation** of RS-derived WSR and insitu WL data.
 - The assimilation of in-situ data improves in the river bed only.
 - The assimilation of RS-derived flood extent observations improves in the floodplain.
- ✓ Demonstrated in OSSE using synthetical data (insitu and RS)
- √ Fabricated flood event based on 2003
- √ Implemented in hindcast mode

CONCLUSIONS AND PERSPECTIVES

- ✓ When gauge data are not available, RAPID simulations can be used as **forcing** and corrected with the **assimilation** of RS-derived WSR and insitu WL data.
 - The assimilation of in-situ data improves in the river bed only.
 - The assimilation of RS-derived flood extent observations improves in the floodplain.
- ✓ Demonstrated in OSSE using synthetical data (insitu and RS)
- √ Fabricated flood event based on 2003
- ✓ Implemented in hindcast mode

- Simulate more recent events with RAPID over flood events when Sentinel-1 observations are available
- ☐ Extend to other catchment of interest (e.g. Ohio-Wabash, Adour River, Rhine River)
- ☐ Run simulation in forecast mode

REFERENCE

- 1. Besnard, A., & Goutal, N. (2011). Comparison between 1D and 2D models for hydraulic modeling of a floodplain: case of Garonne river. *Houille Blanche-Revue Internationale De l'Eau*, (3), 42-47.
- 2. P. Kettig, B. Simon, G. Blanchet, C. Taillan, S. Ricci, T. H. Nguyen, T. Huang, A. Altinok, N. T. Chung, G. Valladeau, R. Goeury, and A. Roumagnac, "The SCO-FLOODDAM project: New observing strategies for flood detection, alert and rapid mapping," in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (pp. 1464-1467). IEEE.
- 3. Mirouze, I., Ricci, S. & Goutal, N. (2019). The impact of observation spatial and temporal densification in an ensemble Kalman Filter. *In XXVIth TELEMAC-MASCARET User Conference*.
- 4. Ricci, S., Piacentini, A., Thual, O., Pape, E. L., & Jonville, G. (2011). Correction of upstream flow and hydraulic state with data assimilation in the context of flood forecasting. *Hydrology and Earth System Sciences*, *15*(11), 3555-3575.
- 5. Nguyen, T. H., Delmotte, A., Fatras, C., Kettig, P., Piacentini, A., & Ricci, S. (2021). Validation and Improvement of Data Assimilation for Flood Hydrodynamic Modelling Using SAR Imagery Data. In *Proceedings of 2020 TELEMAC-MASCARET User Conference October 2021* (pp. 100-108).
- 6. Nguyen, T. H., Ricci, S., Fatras, C., Piacentini, A., Delmotte, A., Lavergne, E., & Kettig, P. (2022). Improvement of Flood Extent Representation with Remote Sensing Data and Data Assimilation. *IEEE Transactions on Geoscience and Remote Sensing*, 60, 1-22, 2022, Art no. 4206022, https://doi.org/10.1109/TGRS.2022.3147429
- 7. Nguyen, T. H., Ricci, S., Piacentini, A., Fatras, C., Kettig, P., Blanchet, G., Peña Luque, S., & Baillarin, S. (2022). Dual state-parameter assimilation of SAR-derived wet surface ratio for improving fluvial flood reanalysis. *Water Resources Research*, 58, e2022WR033155. https://doi.org/10.1029/2022WR033155

THANK YOU

for your attention

Contact: thnguyen@cerfacs.fr

Acknowledgments:

SCIENCELEADSTHEFUTURE

TELEMAC-2D - OVERVIEW

Flow velocity, Water level, Water surface elevation, etc.

FLOODML FRAMEWORK – FLOOD MAP INFERENCE

CHAIN

- Preprocessing: calibration, orthorectification, reprojection.
- Training database: 223 S-1 images from past flood events (EMS) + 90% GSWO labels.
- Random Forest applied on VV and VH S-1 images (resolution 10 x 10 m).
- CuML library for rapid computation: **3-4 mins/image**.
- Accuracy on 5 test cities averages 87%.
- Postprocessing: majority filtering.

Copernicus EMS: Emergency Mapping Service GSWO: Global Surface Water Occurrence MERIT: Multi-Error-Removed Improved-Terrain DEM: Digital Elevation Model

ENSEMBLE DATA ASSIMILATION

